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Abstract

In this paper we show that the M/M/C queue, with

arrival and service rates which vary according to the

state of a Markov process, has a steady-state probability

vector of a modified matrix—geometric form. The rate

matrix R is the unique positive solution to a quadratic

matrix equation, which may be solved numerically by suc-

cessive substitutions. A theorem which provides an accur-

acy check on that computation is proved.

Finally a numerical example is discussed and its

results are interpreted.

Key Words

Queueing theory, MIMIc queue, random environment,

fluctuating queues, computational probability.
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I. Introduction

This paper contains generalizations and further

elaborations of results discussed in (1]. We refer to this

earlier paper for all definitions and notations. The main

new topics of discussion are: the joint stationary proba-

bility distribution of the queue length and the underlying

phase state, considered at epochs where the phase state

changes; the extension of Theorem 5 of [1] to the M/M/c

queue; the discussion of some computational aspects and

numerical examples. Throughout this paper, we shall only

consider stable versions of the queues under discussion.

Lemma 1

Provided that irA < ir~z , the positive matrix R, which

is the unique solution to the equation

(1) R2~ (ia ) + R [Q—A (X)—~ (p)] + ~~( A )  = 0,

in the set of nonnegative matrices of spectral radius less

than one, satisfies

( 2) R u = X .

Proof

The matrix R was introduced in Theorem 5 of [1]. By

postznultiplying Cl) by e, we obtain
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R21i - R (A+~i) + A = (I-a) (A-Rii ) = 0.

Since the spectral radius of R is less than one, the result

follows .

Remarks

a. The equality (2) can either be used as an accuracy check

on the numerical computation of R or can be incorporated into

the evaluation of R, so as to expedite that algorithm.

b. The inner product irRe is easily seen to be the steady—

state probability that the server is occupied. It should be

noted that in general this quantity is not equal to

p = (irA) (ir ii)~~~. In pedagogical material, it should therefore

be stressed that the interpretation given to the traffic

intensity is strongly model-dependent.

An exception is the interesting special case, where

= ~~e. In that case, the equality p = irRe follows readily

from (2).

- - — a - - —
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II. The Queue Length at Phase Transitions

The motivation for considering this embedded process

is of some interest. As noted in [ 1], the most interesting

cases of the M/M/l queue in a Markovian environment involve

one or more phases j during which A~ > ~~~~ even though the

global queue is stable. The realizations of such queueing

processes exhibit substantial random oscillations which are

evident in their effect on the components of the steady—

state vector x of Thm. 5 [ 1). During a sojourn in a phase

j for which the queue is “locally” unstable, substantial

buildup may occur to be cleared during later phases for which

the queue is locally stable.

One might expect to obtain useful additional informa-

tion by considering the queue lengths at the successive phase

transitions. We shall derive the joint stationary probabil-

ity density of the queue length and the phase immediately

before and immediately after phase transitions. We shall

however show that the conditional queue length density at the

end of a sojourn in the phase j is the same as the conditional

queue length density, given that the phase is j. By suitable

interpretation of a detailed numerical example in Section IV,

we shall see that this result is due to the exponential

nature of the sojourn times in the various phases.

- ---~~ .•~ ~ - -_ _ _ _ _ _ _ _
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It is clear that the sequence 
~~~~~~~~~~~~~ 

where

is the queue length and J~ the phase state immediately

after the n-th phase transition, is a Markov chain on the

state space {(i,h): i~0, l~h~mJ. We denote by p~1~ (h,u),

the probability that in an ordinary M/M/l queue with para-

meters Ah, Mh, the queue length at time u is i’, given that

it is i at time 0. Explicit formulas for Pjp (h,u) are

known, but will not be needed in our discussion. The transi-

tion probability matrix P of the chain {(~~ ,J~)} is then

given by

-ahu(3) Phh,(i,i’) = 

~~ 
p
~~

,(h,u)e du 
~hh’~

for i~O , i’~ 0, h~h’, l~h, h’~m .

= 0, for U0, i’.~O , h=h’.

The exponent °h = -Q~~, for l~h~m. We shall find it

convenient to partition the matrix P into mxm blocks

P(i,i’) = {P~j~t (i,i’)}, which we write as

(4) P(i,i’) = V (i,i’)(Q+t(a)], for i~0, i’~ 0,

where ~ (a) = diag (a1,. . . , am) and V(i, i’)
= dia~ [f Pu ,  (h,u)e 

h du Uh~m~.

Theorem 1

The stationary probability vector =

of P is given by

— a . 
- 

- —
~~~



= ( a) ln(I_R)R1(Q+t~(a)], for i~0.

Proof

The steady-state equations ~ = yP, may be written as

(6) = ~ ~~
,V (i’,i)(Q+

~
(a)] = w~~(Q+~~(a)],

for i~0, where = z~. 
,V (i’ , i).

i. ’ =0

-l 

Setting = u, we first obtain that

uA (a) (Q+~ (a)]=u. Also ue=l, since ~~=l. It readily follows

that U = (na)~~~ir~~(a), a result which is to be expected.

Setting I p.,. (h,u)e h du = pr ,. (h), for l~h~m , the0 1]. 11.

birth-and-death equations for the M/M/l queue yield in a

straightforward manner that

(7) p~ ,0 (h) (ah+Ah) 6i’O +

p
~ ,j

(h)(ah+Xh+uh) = 5 i. ’i. + p
~

t ,i_l (h)Ah +

for i’~~0, i~l, l~h~m.

It now readily follows that

(8) V(i’,0)~~(a+A) = 
~i’O’ + V(i’,l)ti (U),

V(i’,i)~~(a+A+ij) = S. , .I + V(i’,i—l)A(A )

+ V(i’,i+l)A (iz),

for i’~~0, ill.
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We further obtain that

~~~~~a+A ) = 1~~~i~~
(J!)

~~ 
(a+A+jt) = 

~j~~~j-1~ .~~~ ~!i+l~ 
(E.)

= 
~-i ~~~ (a) 

] 
~~i—l~ 

( A )  
~~i+l~ 

(a) 
‘

for i~0.

Upon simplification , we notice that the vectors

~~~~~, i~0, satisfy the equations

(10) ~0[Q— ~(~)1 + 
~l~~E) 

= 2.

+ w~~(Q-~~(A + ii)] + 
~i+l~~ & = 2.’

for i~1. These are, except for the normalizing condition ,

precisely the same equations as satisfied by the vectors

~~~ 
i~0, in Tbm. 5 of [1]. Moreover, the vectors need to

be positive and the sum ! w
~
e must be finite. It now fol-

i=0
lows from classical results an irreducible, positive recur-

rent Markov chains that = kx~~, for i~0 and some positive

constant k. It follows immediately that

for i.~0, which upon normalization yields the stated result.

Corollary 1

The conditional mean queue length at the beginning

of a j-phase is given by

(11) ~ J1r(I_R)
_1R[ Q+~~(a) ] , for ~~~~~~lrjaj l

_ 
—

The conditional stationary density of the queue

length at the beginning of a j—phase is given by
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(12) 1 [~~(I-R)R~iQ+~~(a)]T 
, for i~0.

i i [ ii

Corollary 2

Let z = (~~~,z1,...) with components ~~~ be the

steady-state probability vector of the queue length and

the phase immediately before a phase change, then

(13) 
~~~~~ 

= (ira)~~~ir (I—R) R~~ (a) , for i~0.

Proof

The vectors z~ and are related by

(14) (Q-I-i~ (ci)] = 

~
, for i~ 0.

Clearly the vectors in (13) are positive, satisfy the

equations (14) and ze=l. This guarantees that z is the

steady-state vector of the Markov chain, obtained by con-

sidering the queue length and phase immediately prior to

phase transitions.

Remark

We see that

(15) ir;
1
x~~ = (ira) (ir

~~
a
~~
)
1
z
~~~i for i20, 1~j~m ,

so that the conditional probabilities that there are i

c-~istomers in the queue, given that the phase is j and given

that a sojourn in the phase j has ended, are equal.



_ _ _ _ _  - -

III. The Multi-server Queue

The M/M/c queue with randomly varying arrival and

service rates defines a Markov process with the infinitesimal

generator Q*(c), given by

A00 A01
A10 A11 A12

A20 A21 A22

(15) Q*(c) = Ac_l ,O~~Ac...l,l Ac_1,2

A0 A1 A2

A
0 

A1 A2

where A2 = A01 = Ai2 = ~ ( A ) ,  A~~0 = iA ( i i ) ,  A00 = Q-~~ ( A ) ,  and

A~ ,1 = Q—t~(A +i~i), for l~i~c—1 . A0 = c~~(M) , and

A1 = Q-~ (A+c~). We assume that X>O and ~i> O.

Theorem 2

Provided p (c) = ( i r A )  (cw~ )~~~<1, the queue is stable.

The steady-state vector x = ~~~~~~~~~~~~~~~~~~~~~~ is given

by

(16) = ~~~1~~
-c+1, for k~c.

The matrix R~ is the unique solution in the set of non—

negative matrices of spectral radius less than one of the
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equation

(17) cR~~(u) + Rc[Q~~
(A+c1

~
i)] + ,~(A) = 0 .

The matrix Rc is strictly positive and cR~u = A .

The matrix T, given by

A00 A01

A10 A11 A12

(18) T = A20 A21 A22

Ac_i ,o Ac...l,1+ RcAO

is an irreducible semi-stable matrix of order cm. The

vector (x0 1x1,...,~~~~1) is its Left eigenvector corresponding

to the eigenvalue zero. It is normalized so that

(19)  + + 
~.c—2~~ 

+ 
~~~_i

( IRc)~~~
e = 1.

Proof

The assertions about the matrix Rc were already

proved as part of Thin. 5 in (1] . With Rc so chosen, the

steady-state equations

+ xjA1 + x~~ 1A2 = 2.’ i~.c,

are satisfied , provided 
~~~~~~~~~~~~~~~~~~~ 

can be properly chosen.

The c initial equations are equivalent to

= 2..
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Since T is clearly irreducible, it suffices to verify that

T is semi-stable. The off-diagonal elements of T are clearly

nonnegative. Moreover we have

Ac_i ,O! + Ac...l,l! + RcAO! = RcAO! - Ac_i 2e

= CR
cI4 - =

It follows that the diagonal elements of T are negative and

hence that T is semi-stable. The normalizing condition (19)

uniquely determines 0~i<c.

Remark

It is evident that the proof does not depend on the

explicit form of the cmxcm upper left hand corner of Q*(c),

but only on the irreducibility of T. Any variations of the

present model which modify only the upper left hand corner

will therefore have a steady—state vector of the same general

type.
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IV. A Numerical Example (c=1)

In order to illustrate the behavior of a queue in

which short periods of gross instability alternate with

long periods of highly undersaturated conditions, we con-

sider an example where Q is given by the 8x8 matrix

—4 4 0 0 0 0 0 0

0 —1 1 0 0 0 0 0

0 0 —l 1 0 0 0 0

1 0 0 0 1 1 0 0 0
Q = — .

4 o 0 0 0 —l 1 0 0

0 0 0 0 0 —1 1 0

0 0 0 0 0 0 —1 1

1 0 0 0 0 0 0 —1

and the vectors A and ~ are given by

A = (40, 5, 2, 1, 1, 1, 1, 1),

~~~= (10 , 5, 5, 3, 3, 3, 3, 3).

The vector it is given by

4 , 4 , 4 , 4 , 4 , 4 , 4 ) ,

and p = (~~~~) (~~~~)
_ 1 

= 0 . 8 .

The equation R = _A2A~~
l_R 2A0A~~~ , was solved by

successive substitutions, which were continued until the

— -~~~~~~~~— —~~~~~~~ - —— — . 
. -

a ~~~~
-
~‘ 

- 
~~~~~~~
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maximum entry-wise difference between iterates was less than

io 8. This took 989 iterations. The vector RM was evaluated

and it was found that A—Ri~ < .0 6e, with the largest differ-

ence occurring in the large first component.

A small improvement in accuracy can be obtained with

little additional effort. Let R”~R’ be the last two iterates

computed, then we compute the matrix R by R~~~=R 3. 
+

e~ (R ~ 
~ 

, —R . , ) ,  where the quantities e are chosen so that

RA = p .

The conditional means and variances of the queue

lengths in the various phases were computed next and are

listed below.

Table 1: Conditional Means and Variances in
the Various Phases

Phase Mean Variance

1 50.65 2575.55
2 50.98 2581.12
3 41.55 2482.10
4 36.05 - 2346.10
5 31.29 2178.66
6 27.17 1996.99
7 23.60 1812.20
8 20.50 1631.56

Selected percentiles of the conditional distributions

exhibit very clearly the variability of the queue length over

the various phases.

- -~~~~~~~-- . . ~~~~~~-- _ _ _ _ _ _ _
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Table 2: Deciles of the Conditional Queue Length Distribution

(the first index for which k% is exceeded)

% Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8

10 5 5 0 
-

20 11 11 2 0 0

30 18 18 8 2 1 0 0

40 26 26 16 8 2 1 1 0

50 35 35 25 18 10 4 2 1

60 46 47 36 29 22 14 7 2

70 61 61 51 44 36 29 22 14

80 82 82 71 64 57 50 42 35

90 117 117 107 99 92 85 77 70

95 152 152 142 134 127 120 113 105

99 234 234 223 216 209 202 194 185

Table 3: Conditional Probabilities of Emptiness in the Various
Phases

Phase Probability of Emptiness

1 0.0142
2 0.0168
3 0.1284
4 0.2079
5 0.2701
6 0.3233
7 0.3692
8 0.4090

_ a  - ~1*. ’ ’t ._.-... _ _ . _ - -— ---—- __ _ _ _ _ _ __ _ ~_ t ~______ __ _ — —
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Interpretation

The numerical results for this example exhibit a

number of qualitative features, which deserve to be stressed

and interpreted as they are not present in more elementary

queueing models.

a. The global mean queue length is given by

w (I-R)~~ Re = 3 3 . 6 3 , but this is clearly not a

meaningful descriptor of this highly oscilla-

tory queue.

b. The M/M/1 queue with parameters A0=i r A4~~, and

has a stationary mean queue length

of 4, with a variance of 20. It does not begin

to offer an approximation to the present queue.

c. The parameters chosen for the numerical example

can be thought of as representing a short over-

saturated rush hour (Phase 1), a transitional

period (Phases 2 and 3) and an unsaturated period

(Phases 4 through 8), repeated cyclically. The

conditional queue length distributions at the

ends of Phases 1,3 and 8 represent the most

“extreme” queue conditions. By mixing the con-

ditional queue length densities of the Phases 4,

5,...,8 with the weights it. (ir4+...+ir8)
1, 4~ j~ 8,

we obtain the conditional queue length density,

given that the queue is in its unsaturated period.

This density will clearly be different from that

at the end of Phase 8.

- ~~~~~~~~~~ - - - . 

. 

- - -~~~~~~~~~~~~
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d. Although the mean queue lengths vary consider-

ably between phases 1 and 8, there is much less

variation in the standard deviations. This is

due to two causes. During the oversaturated

phase there is enormous random variability in the

behavior of the queue. Very long queues at the

end of a rush hour will take a long time to dis-

sipate, while shorter queues dissipate quickly.

This effect is likely to become apparent in high

variances in spite of reduced means in the higher

phases.

The second cause of the high variability in those

phases lies in the exponential distribution of

the sojourn times in each phase. The effect of

this assumption is easy to study. By modifying

the Q-matrix, we can change the distributions of

the rush hour, the transition period and the

undersaturated period in a versatile manner with-

out changing their mean durations. These periods

can have arbitrary phase type distributions,

which may have arbitrary positive coefficients of

variation.

In order to illustrate the latter points numerically we com-

puted a number of parametric variants of this model. The

results will be presented only briefly, but they are striking

indeed.
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Variant 1

We replace the exponential duration of the rush-hour

by an Erlang distribution of order 2 with parameter 2. This

does not affect the mean duration of the rush-hour period,

but reduces its variance. The inner products irA and ~~

remain as before. There are now nine phases.

Table 4: Conditional Means and Variances in the
Various Phases

Phase Mean Variance

0 26.69 801.99
1 41.70 1051.32
2 41.87 1077.30
3 32.03 1061.05
4 26.34 985.76
5 21.53 883.98

- 6 17 .53  771.76
7 14.24 6 6 0 . 0 4
8 11.54 555.57

Phases 0 and 1 now correspond to the rush—hour . We note the

drastic reduction in the means and variances in all the

phases. The dependence on the random variability of the

duration of the rush-hour period is very strong indeed.

Variant 2

In this case we increased the service rate during the

transitional period, keeping irp constant by reducing the ser-

vice rate later in the undersaturated case. The parameters

are as in the original model, except for ‘~i which is now

(10, 7, 7, 3, 3, 3, 1, 1). The effect of this change in

parameters is not as substantial as one might expect.

- — .—--—.——.----- - - - —---.- --- — - - -- ____________________— — ___________________________________________

a - - - -- -- - - -
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Table 5: Conditional Means and Variances in
the Various Phases

Phase Mean Variance

1 54.56 2775.76
2 47.94 2734.02
3 34.95 2442.26
4 30.49 2258.57
5 26.60 2067.01
6 23.21 1875.74
7 23.98 1846.81
8 24.51 1828.46

Variant 3

The most striking improvement in the conditions of

the queue is obtained by increasing the service rate during

the rush period itself. This is, of course, not always

economically feasible.

The parameters are again as in the original model,

except for p which is now (30 , 5, 5, 2, 2, 2, 2, 2).

Table 6: Conditional Means and Variances in
the Various Phases

Phase Mean Variance

1 15.75 251.15
2 16.66 260.63
3 10.13 214.98
4 8.49 187.23
5 7.12 161.06
6 5.99 137.07
7 5.07 115.67
8 4.31 97.01

A final comment is concerned with the relationship

between the means and corresponding standard deviations in

all, the preceding examples. We see that queues, which
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periodically pass through phases in which they are locally

oversaturated, exhibit considerable random variation. To

obtain reliable parameter estimates by Monte Carlo simula-

tion, with the rather small sample sizes employed in prac-

tice, appears to be impossible. The numerical behavior of

the present examples casts serious doubt on the merits of

simulation methods, when applied to realistic queueing

models, unless prohibitively large sample sizes are used.
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